
Align-and-Forward Relaying for
Two-hop Erasure Broadcast Channels

David T.H. Kao∗, Mohammad Ali Maddah-Ali†, and A. Salman Avestimehr∗
∗University of Southern California, Los Angeles, CA, USA

†Bell Labs, Alcatel-Lucent, Holmdel, NJ, USA

Abstract—We consider the problem of broadcast over wireless
erasure networks. To understand the challenges and opportuni-
ties of these setups, we study a two-hop erasure broadcast channel
consisting of a single source, two relays, and two destinations
desiring independent messages. In our network, no transmitter
has channel state knowledge of erasures on outgoing links (i.e., no
CSIT): The source has no knowledge of any channel state, each
relay only has knowledge of the channel states of its incoming
link, and destinations are provided with full channel knowledge.

We propose a scheme, referred to as Align-and-Forward, that
exploits the (unknown) common subspace of received signals at
the relays, which results from the source-to-relay broadcast, in
order to minimize the dimension of the interference subspace at
each destination. We show that Align-and-Forward outperforms
available alternative schemes in terms of sum-rate. We also
present new outer-bounds and demonstrate the optimality of
Align-and-Forward in certain regimes.

I. INTRODUCTION

Capacity analysis of erasure networks can provide valuable
insight into protocol design for packetized wireless networks
and thus has been the subject of much research. For instance,
in [1] it was shown that the capacity of unicast or multicast in
wireless erasure networks is achievable through random linear
network coding at all nodes, implying that it is optimal for
all intermediate relays to act as “dumb” mixers to enable all
destinations to decode the packets. However, as one goes be-
yond multicast to multiple unicast or even broadcast scenarios,
the capacity of packetized wireless networks and their optimal
communication protocols remain, in general, an open problem.

In order to gain broader insight into the challenges posed
by general wireless erasure networks, we consider broadcast
in a two-hop erasure network, containing a single source, two
relays, and two destinations (shown in Figure 1). We assume
all transmitting nodes (source and relays) are provided with
no knowledge of erasures affecting their own transmissions;
thus, our model is one of no channel state information at
transmitters (i.e., no CSIT) and no feedback. Relays have
knowledge only of erasures on their incoming link, whereas
destinations have full knowledge of all channel states. This
problem remains one of the simplest unsolved cases in wireless
erasure networks (for one-hop broadcast, the full capacity
region is achievable through time-division and random linear
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codes [2]) and captures communication challenges posed by:
1) multi-hop communication paths, 2) multiple simultaneous
communication sessions, and 3) distributed relaying.

For the two-hop erasure broadcast channel described above,
we propose a transmission scheme which relies on a novel
relaying strategy referred to as Align-and-Forward. In all
network regimes, Align-and-Forward either matches or out-
performs the best known scheme proposed in [2]. Align-and-
Forward relies on a form of intersession coding that exploits
the (unknown) overlap in bits transmitted by the source and
received by both relays in the first hop of the network.
Relays use these overlapping bits to form and broadcast bits
of common interest to both destinations. It is important to
note that relays are able to exploit the overlap despite not
knowing which bits are overlapping at both relays. Simply
stated, Align-and-Forward implements a probabilistic form of
interference alignment at the relays without explicit knowledge
of the targeted alignment subspace. Although it is known
that intersession coding can provide capacity gain in erasure
broadcast networks, all prior works have relied on feedback
to achieve the gains (e.g., [3]–[5] and references therein).
Quite interestingly, Align-and-Forward demonstrates a gain
from intersession coding without requiring feedback.

We also develop new upper bounds on the sum-capacity of
the two-hop erasure broadcast channel. Our bounds leverage
a recent result of [6] which captures the entropy “leakage”
of information from a transmitter to an unintended receiver
in erasure networks with no CSIT. We use the lemma, along
with a genie-aided construction, to develop complementary
inequalities, that when summed, yield two novel upper bounds.

II. NETWORK MODEL

We study the wireless erasure network depicted in Figure 1,
which consists of a source, two relays, and two destina-
tions. Each node’s transmission is broadcast to all connected
receiving nodes, while each received sequence is corrupted
by random symbol (packet) erasures. At a receiving node,
sequences from different transmitters are received orthogonally
(i.e, without interference). Channel input symbols are binary
and erasures occur independently on each transmit-receive
link. As shown in Figure 1, in this paper, we consider a sym-
metric network, parametrized by the erasure probability tuple,
(ε1, ε2, ε3). Without loss of generality, we assume ε2 ≤ ε3.



Formally, at time t, let XA[t] ∈ {1, 2} denote the channel
input at node A and YBA[t] ∈ {0, 1, 2} denote the channel
output on the link from node A to node B. Let GBA[t] ∈
{0, 1} denote a channel state, indicating whether an erasure
occurs (i.e., GBA[t] = 0) on the link from node A to node B
at time t. Channel input-output relationships are given by

YBA[t] = GBA[t]XA[t]. (1)

We assume codes of length n, and we use the no-
tation Xn

A to refer to the vector of channel inputs
Xn
A = [XA[1] . . . XA[n]]. Accordingly, we define

Y nBA and GnBA. For each pair of nodes A and B,
GnBA is an i.i.d. Bernoulli process with parameter 1 −
εk, where εk is specified in Figure 1. Finally, we de-
note the tuple of all channel state variables as G

n
=

(GnR1S
, GnR2S

, GnD1R1
, GnD1R2

, GnD2R1
, GnD2R2

).
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Fig. 1. The symmetric two-hop erasure broadcast channel.

We assume destinations have full channel state information
(CSI) for the entire the network (G

n
), and relays have CSI

only of their own incoming link, i.e., Relay 1 knows only
GnR1S

and Relay 2 knows only GnR2S
. This means that each

relay is unaware of the erasures within the other’s received
signal. The source has no CSI whatsoever.1

We are interested in the sum-capacity of the broadcast mes-
saging scenario, where the messages desired by Destination 1
and Destination 2, M1 and M2 respectively, are independent.

III. ACHIEVABLE SCHEME

In this section, we present a new scheme for the two-
hop erasure broadcast channel. The innovative aspect of our
approach is a relaying strategy referred to as Align-and-
Forward.

For comparison, we first summarize the best known scheme
of [2], which we refer to as the time-division (TD) approach
since it is based on time-division between messages and
random linear coding.
Time-Division Scheme: In the TD scheme, each node allo-
cates a portion of transmissions to either M1 or M2. We use
the variable αA to denote the proportion of time dedicated to
communicating M1 at a transmitting node A, and consequently
1 − αA represents the time allocated to communicating M2.
The result is a separation of the two-hop erasure broadcast

1The Align-and-Forward scheme only requires nodes have “downstream”
CSI: knowledge of erasures occurring along paths connecting the node to the
source. One might accomplish this by forwarding CSI from the source-relay
links to both destinations, with overhead cost vanishing as n grows large.

channel into two virtual unicast erasure networks, one for each
message. Figure 2 depicts the virtual network for M1, with
new erasure probabilities:

εTD0 = 1− αS

εTD1 = ε1

εTD2 = αR1ε2 + (1− αR1)

εTD3 = αR2ε3 + (1− αR2).
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Fig. 2. The virtual S-D1 network emulated using the TD scheme.

Within the virtual network allocated to a message, the
source and relays utilize the random linear codes to construct
channel inputs, and the maximum rate is given by the min-cut
of the virtual network. Given network parameters ε1, ε2, and
ε3, optimization of the time-divisions to maximize sum-rate in
the two-hop erasure broadcast channel yields the rate [2]:

rTDΣ = min

{
1− ε21, (1− ε1) + (1− ε3)

[
2−

1− ε1
1− ε2

]
+

, 2− 2ε2

}
.

(2)

As an example, when ε1 = ε2 = 1
2 and ε3 = 4

5 , the TD
approach achieves a rate of rTDΣ = 7

10 bits by choosing αS =
αR1

= αR2
= 1

2 .
Our scheme also utilizes random linear encoding and time-

division at the source, but achieves a sum-rate gain by im-
proving the approach taken at the relays: Intersession encoding
is used to create transmissions simultaneously useful to both
destinations. For these “bits of common interest” from Relay 1,
the component that is undesirable to Destination 2 (i.e., bits
about M1) is aligned with what Destination 2 receives from
Relay 2. Similarly, Relay 2 aligns parts of M2 with what
Destination 1 receives from Relay 1. We note that because
each relay is unaware of what the other has received, the exact
subspace that should be targeted for alignment is unknown to
each relay. Even more surprisingly, our scheme demonstrates
that alignment is possible without relays even knowing which
of their transmissions are aligned.

Because the general Align-and-Forward scheme involves
many steps, we first present its construction and sum-rate gain
with an illustrative example. For simplicity, we present the
example assuming large n and invoking law of large numbers.
Additionally, we use calligraphic typesetting to distinguish
the vectors of inputs (e.g. X ), unerased outputs (e.g. Y), and
encoded bits (e.g. Q or W) of our scheme versus the general
vector input-output variables of the channel.
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Fig. 5. Second-hop transmission and decoding at Destination 1: Message M1 content in red and M2 content in blue. Shaded areas represent RLC bits
overlapping at the relays. Bold-outlined blocks with alphabetical labels are used to decode M1.

A. Illustrative Example

Let ε1 = ε2 = 1
2 and ε3 = 4

5 . Recall that for this network,
the TD scheme achieves rTDΣ = 7

10 bits. We show that our
scheme improves upon this, achieving a sum rate of rA&F

Σ = 3
4

bits, which is indeed the sum-capacity for this example.
Let messages M1 and M2 both consist of 3n

8 bits, where n
is a large integer. For ease of exposition, we ignore terms
of order o(n), which vanish in the calculation of rate per
channel use. The source applies random linear encoding on
each message to create n

2 random linear combination (RLC)
bits. Denote with X iS the vector of RLC bits created for mes-
sage Mi. Elements of X 1

S and X 2
S are broadcast sequentially

by the source, as shown in Figure 3. Each relay receives
approximately n

4 unerased bits per message, Mi, denoted with
the vectors YiAS for A ∈ {R1,R2}. Because erasures occur
independently, approximately n

8 RLC bits are received at both
relays (overlapping) for each message. However, due to lack
of knowledge, each relay is unaware of which RLC bits have
been received by the other relay.

Relay 1 re-encodes received RLC bits using the following

three-phase transmission scheme (depicted in Figure 4):
Phase 1 (n4 channel uses): Relay 1 applies a random lin-

ear code upon Y1
R1S

, and creates a vector, QR1
depicted as

the red striped block, of n
4 RLC bits describing M1, and

broadcasts these sequentially.
Phase 2 (n2 channel uses): Relay 1 applies a random lin-

ear code upon Y2
R1S

, and creates a vector, W1
R1

depicted as
the blue striped block, of n

2 RLC bits describing M2, and
broadcasts these sequentially.
Phase 3 (n4 channel uses): Relay 1 applies another ran-

dom linear code upon Y2
R1S

, and creates a vector, W2
R1

, of n
4

RLC bits describing M2. Each of these is XORed with one
(uncoded) element of Y1

R1S
and broadcasted.

As we will see later, Phase 3 increases the efficiency of the
scheme, versus TD approach, by creating messages which are
interesting to both receivers. However, there are two subtle
points in Phase 3. The first one is that not all bits created
in this phase are of common interest. Indeed all of these bits
created at Relay 1 will be useful to Destination 1 (as will be
explained later), however only part of them are also useful for



Destination 2. This part is shown in Fig. 4 in bold-dotted box.
Remember that one part of Y1

R1S
, colored by shaded red, is

also available at Relay 2. Only the bits that are created by
XORing this shaded-red part of Y1

R1S
and RLC of W1

R1
are

of common interest. The reason is that some of these shaded-
red bits have been previously communicated by Relay 2 in
Phase 2, and overheard by Destination 2. Thus, Destination 2
can use them to clean some of the bits received from Relay 1
in Phase 3, and resolve its own (blue) message.

The second subtle point is that Relay 1 cannot identify
the shaded-red part of Y1

R1S
, due to its local knowledge

of the channel state. Otherwise, in Phase 3, Relay 1 could
use just the shaded-red part of Y1

R1S
and create messages

that are all of common interest. This point justifies why we
use uncoded versions of Y1

R1S
in Phase 3: Applying RLC

over Y1
R1S

mixes the overlapping (shaded) part with the non-
overlapping (unshaded) part. Since the unshaded part of Y1

R1S

has not been overheard by Destination 2, it cannot be canceled.
Relay 2 (not depicted) uses the analogous three-phase

scheme, but switches the roles of messages: a random linear
code is applied to Y2

R2S
during Phase 1 to createQR2

, two other
random linear codes are applied to Y1

R2S
during Phases 2 and

3 to create W1
R2

and W2
R2

respectively, and elements of W2
R2

are XORed with uncoded elements of Y2
R2S

during Phase 3.
Focusing on Destination 1, we now describe the procedure

to decode M1 by clarifying the nature of bits received during
each phase from each relay, while referring to Figure 5.

Relay 1, Phase 1 (Block A of Fig. 5): Destination 1 re-
ceives approximately n

8 bits from QR1
, which describe M1.

Relay 1, Phase 2 (Block B of Fig. 5): Destination 1 re-
ceives approximately n

4 bits from W1
R1

, which carry in-
formation about M2. With high probability, Destination 1
can recreate the original n

4 bits in Y2
R1S

, entirely. Moreover,
Destination 1 can use knowledge of all erasures in the
network (G

n
) to identify approximately half of these (n8 )

as overlapping bits (colored shaded-blue).
Relay 1, Phase 3 (Blocks C & D of Fig. 5): Recall that,

from the previous phase, Destination 1 already knows Y2
R1S

.
It uses this knowledge to remove the W2

R1
component from

Phase 3 transmissions and receives approximately n
8 bits from

Y1
R1S

, which all carry information about M1. Therefore, as we
mentioned before, all the bits sent by Relay 1 in this phase,
and received by Destination 1, are useful to Destination 1.
Relay 2, Phase 1: Destination 1 ignores these packets.
Relay 2, Phase 2 (Block E of Fig. 5): Destination 1 re-

ceives approximately n
10 bits from W1

R2
, which describe M1.

Relay 2, Phase 3 (Block F of Fig. 5): The bits received
from Relay 2 during this phase, can be split into two
parts. The part which is useful at Destination 1 is denoted
by F. This part has been formed at Relay 2 by XORing
RLC of Y1

R2S
with uncoded shaded-blue part of Y2

R2S
. The

reason is as follows. Recall that Block B was enough for
Destination 1 to resolve all of Y2

R1S
. Due its full access

to channel state information, Destination 1 can recognize
the shaded-blue part of Y2

R1S
(M2 bits overlapping at both

relays). Therefore, such knowledge is used by Destination 1

to clean interference from Block F. The number that can be
recovered is (1 − ε3) 1

2 ×
n
4 = n

40 . The coefficient 1
2 comes

from the fact only half of the messages received in this phase
from Relay 2 falls in Block F.

In order to determine the rate achieved for M1 we now
determine the maximum number of linearly independent RLC
bits received by Destination 1. First we observe that Desti-
nation 1 can decode all n

4 elements of Y1
R1S

from what it
receives in Phase 1 and Phase 3 from Relay 1. Also it receives
n
10+

n
40 = n

8 RLC bits describing M1 from Relay 2 in Blocks E
and F. Therefore, in total, it has 3n

8 RLC which can be shown
are independent and thus are enough to recover M1. The same
argument is valid for Destination 2. Therefore, we achieve the
sum-rate of rΣ = 2× 1

n
3n
8 = 3

4 .

B. General Scheme

We now describe the end-to-end general scheme, which re-
quires an additional step within the Align-and-Forward relay-
ing scheme. This step was unnecessary for the example, but it
allows us to guarantee a rate either matching or outperforming
the TD scheme for all network instances.

Source Encoding & Transmission: Each message, M1 and
M2, consists of n r

A&F
Σ

2 bits, where rA&F
Σ is specified later. For

each Mi, the source applies a random linear code and creates
n
2 RLC bits, and broadcasts these sequentially.

Align-and-Forward Relaying: Recall that in the first hop,
each relay (i) received a sequence Y nRiS

, which contains
approximately n(1 − ε1) unerased bits. Among these, ap-
proximately n

2 (1 − ε1) describe M1 and n
2 (1 − ε1) describe

M2. Following the notation of the example, we refer to the
unerased bits at Relay i as vectors Y1

RiS
and Y2

RiS
, where

Y1
RiS

carries information for M1 and Y2
RiS

carries information
for M2. Due to independence of erasure events, overlap in
received transmissions occurs: of the approximately n(1− ε1)
bits received by Relay 1, approximately n(1− ε1)2 have also
been received by Relay 2, and vice versa. Relays, however, do
not know which bits overlap (i.e., shaded bits in Figure 4).

Align-and-Forward consists of three transmission phases,
with the proportion of channel uses allocated to Phases 1
denoted as τ1, Phase 2 denoted as τ2, and Phase 3 denoted as
τ3, where τ1, τ2, and τ3 are given by

τ1 , min

{
1 + ε1

2
,
(1− ε1)ε2
2(1− ε2)

}
, (3)

τ2 ,

[
1− 1− ε1

2(1− ε2)

]
+

, (4)

τ3 ,
1− ε1

2
. (5)

Note that although τ1 + τ2 + τ3 = 1, the exact number of
channel uses per phase must be an integer. Therefore, we allot
bnτ1c, bnτ2c, and bnτ3c channel uses to Phases 1, 2, and 3,
and stipulate that during any channel uses remaining from the
total of n, the relays remain silent.

We first summarize objectives of each transmission phase
before describing the Align-and-Forward relaying scheme in
detail:



• During Phase 1 the transmissions of Relay i carry only
information about message Mi. These are useful Destina-
tion i, but will be ignored by Destination i′ (i′ = 3− i).

• During Phase 2 the transmissions of Relay i carry only
information about message Mi′ . Clearly these transmis-
sions are useful to Destination i′. An important detail is
that even though these transmissions are not immediately
useful for Destination i, still, Destination i overhears
and saves and saves them. These bits will be used in
Phase 3 as side information, which allows relays to create
transmission bits which are useful for both Destinations,
thus increasing efficiency.

• Finally, during Phase 3, each relay applies an intersession
coding technique to mix RLC bits from M1 and M2 such
that:

1) All transmissions from Relay i in this Phase are
useful to Destination i. This is because any information
that Relay i communicates about Mi′ , it has already
delivered to Destination i in Phase 2.

2) Part of transmissions of Relay i in this phase are useful
for Destination i′. This only includes the transmissions
that combine RLC bits of Mi that are already available
at Destination i′. Destination i′ has overheard these
components of Mi in Phase 2 from Relay i′, because
these were also received by Relay i′ from the source
in the first hop (shaded RLCs in Figure 5).

During Phase 1 a random linear code is applied to YiRi
to

create a vector QRi
at Relay i. Elements of QRi

are then
broadcast sequentially. Note that the sequence of elements
from QRi

are a codeword, generated by the random linear
code. The codebook used by Relay i is a function of the
erasures that have occured in the first-hop link, GnRiS

. Since
destinations have full CSI, they will know which codebook
has been used.

Phase 2, in general, does not proceed as in the example.
We require an additional processing block (shown in Figure 6)
which addresses the dual role of Phase 2 transmissions. Recall
that Phase 2 transmissions from Relay i provide message infor-
mation to Destination i′ and side information to Destination i.
In the example, this was easily accomplished, since ε2 = ε1
and we claimed that Destination i was able to decode all of
Yi′RiS

during Phase 2. However, if ε2 > ε1, the time alloted
to Phase 2 in (4) is insufficient to communicate the entire
vector Yi′RiS

. Therefore, in our scheme, each Relay i reduces
the number of bits about Yi′RiS

communicated to Destination i.
Before specifying the method of reduction, we point out a
tradeoff between parts of Yi′RiS

useful to Destination i and
parts useful to Destination i′.

Destination i desires the overlapping bits from Yi′RiS
to use

as side information to cancel interference terms in Phase 3. On
the other hand, Destination i′ desires the non-overlapping bits
from Yi′RiS

because these are bits that are not received by, and
therefore cannot be communicated by, Relay i′. Recall that
Relay i is unable to distinguish between overlapping and non-
overlapping bits, and consequently applying a random linear

code would mix overlapping and non-overlapping bits. It is
impossible for Relay i′ to align with such a mixture, since it
did not receive the non-overlapping bits, so coding elements of
Yi′RiS

reduces the number of alignment opportunities in Phase 3
transmissions. On the other hand, coded (mixed) RLC bits of
Yi′RiS

are more likely to be useful to Destination i′ during
Phase 2.

Our method of reduction balances the effect on each phase
to create a vector of bits at Relay i, VRi which is meant to
be fully decoded by Destination i. The block diagram for
the approach is shown in Figure 6 which is inserted (for the
general scheme) into the lower left dashed region of Figure 4.
We define two reduction parameters νu and νc, which represent
the amount of information about Yi′RiS

that is uncoded and
coded, respectively. Notice that νu and νc are parameters used
at both relays, but are applied to opposite message RLCs.

Two operations are applied at Relay i to Yi′RiS
. In the first,

bnνuc RLC bits are randomly selected from Yi′RiS
to create a

subvector VuRi
. In the second, a random linear code is applied

to Yi′RiS
to create a vector of bnνcc bits, denoted as VcRi

. A
random linear code is then applied to the concatenated vector
of bits VRi

= (VuRi
,VuRi

) to create the vector W1
Ri

, which has
cardinality bnτ2c. Relay i broadcasts elements ofW1

Ri
serially

during Phase 2.
For our scheme, νu and νc are such that they are non-

negative, satisfy

n(νu + νc) ≤ min
{
bnτ2c(1− ε2),

∣∣∣Yi′RiS

∣∣∣} , (6)

and maximize the sum-rate (this is described in greater detail
in Section III-C). The constraint (6) is meant to ensure that
Destination i can decode all of VRi , from only Phase 2
transmissions.

Finally, Phase 3 proceeds in the following manner. A
random linear code is applied to VRi

to create a vector W2
Ri

of RLC bits with cardinality bnτ3c. Each element of W2
Ri

is XORed with a distinct element of YiRiS
and broadcast

serially. If there are not enough elements in YiRiS
, then the

last bnτ3c − |YiRiS
| elements of W2

Ri
are broadcast without

any intersession coding.

Y2
R1S

Random Selection

Random Linear Code

Vu
i

Vc
i

Vi

Fig. 6. Reduction processing block used by Relay 1. Notice that processing
is applied to bits for M2.

Decoding: We describe the decoding procedure as a two-
stage process. In the first stage, each destination uses over-
heard, undesired information to “clean” intersession coded
(i.e., Phase 3) transmissions. Specifically, Destination i first
decodes the vector VRi

from transmissions sent during Phase 2
from Relay i. All of VRi

is used to remove the Mi′ component
of broadcasts received from Relay i during Phase 3. The sub-
vector VuRi

⊆ VRi
is then used to remove the Mi′ component



from a portion of transmissions received from Relay i′ during
Phase 3.

Once interference has been canceled, Destination i is left
with a vector of RLC bits that are a function of only Mi, the
channel states G, and the codes used at transmitting nodes.
Stage 2 of decoding therefore requires that Destination i de-
code Mi using its full CSI, G

n
, and knowledge of codebooks

used at each node.

C. Error Analysis & Achieved Sum-Rate

Recall that decoding occurs in two stages. For each we must
clearly define the modes of failure. We define a Stage 1 error
as the event where Destination i fails to correctly decode VRi

from Phase 2 transmissions from Relay i. Let V̂Ri
denote the

estimate of VRi
at Destination i, and define the probability of

Stage 1 error as

P
(n)
Ei1 , Pr

(
V̂Ri
6= VRi

)
. (7)

Communication of VRi
from Relay i to Destination i during

Phase 2, is equivalent to using block codewords of length-
bnτ2c over a binary erasure channel with erasure probability
ε2. The capacity of the point-to-point binary erasure channel
is well known [?], and we have that if

|VRi
| ≤ bnτ2c(1− ε2), (8)

then there exist random linear codes such that the probability
of error P (n)

Ei1 → 0, as n→∞. By construction, VRi
contains

(bnνuc + bnνcc) bits, and νu and νc satisfy (6). Hence, the
condition holds.

We now argue that if Stage 1 proceeds without error, the
probability of error in Stage 2 of decoding, which deals with
RLC bits for only a single message, is less than or equal to
probability of error in an equivalent unicast wireless erasure
network. Consider the unicast network shown in Figure 7, and

S

R1

R′
2

R2

D1γ0

ε1

ε
1

ωu

ωc

γ1

ε2

γ2

γ3

Fig. 7. The virtual S-D1 network emulated using the A&F scheme.

let erasure probabilities in the network be given by

γ0 = 1
2 , (9)

γ1 = 1− (1− ε2)τ1, (10)
γ2 = 1− (1− ε3)τ2, (11)
γ3 = 1− (1− ε3)(1− ε1)νu, (12)

ωu = 1− 2νu
1− ε1

, (13)

ωc = 1− νc. (14)

We now claim the following:

Claim 1. Assume that Stage 1 of decoding was successful
and that τ1, τ2, τ3, νu, and νc are fixed and satisfy (3)–(5)
and (6) respectively. If there exists a set of length-n random
linear block codes (one for each transmitting node) for the
unicast wireless erasure network in Figure 7 that achieves a
rate r1 with probability of error P ′E12

. Then, there exists a set
of random linear codes for the two-hop broadcast channel that
achieves rate r1 with probability PE12

≤ P ′E12

Proof: Notice that the network depicted in Figure 7
is constructed such that each incoming edge at D1 delivers
approximately the number of unerased bits that one phase
delivers to Destination 1 about M1 in our scheme: The first
(top) edge with erasure probability γ1 corresponds to Phase 1
from Relay 1, the second edge corresponds to Phase 3 from
Relay 1, the third edge corresponds to Phase 2 from Relay 2
and the fourth edge corresponds to Phase 3 from Relay 2. The
same statistical equivalence can be seen in what R1, R′2, and
R2 receive.

Now consider a length-n random linear code applied at each
node in Figure 7, and apply it in our scheme for the two-hop
erasure broadcast channel. To construct a code for each part of
the two-hop erasure broadcast channel scheme, we puncture
the corresponding code from the network of Figure 7.

• At the source in the two-hop erasure broadcast channel,
a length n

2 code is created for M1 by puncturing half of
the RLC bits from the code used by S in Figure 7.

• For Phase 1 transmissions from Relay 1, n− bnτ1c bits
are punctured from the code used by R1.

• For Phase 1 transmissions from Relay 1, n− bnτ1c bits
are punctured from the code used by R1.

• The exact code used at R′2 is used in the coded portion
of the reduction block of Relay 2.

• The code used for the first (top) channel input of R2 is
punctured for use by Relay 2 for Phase 2.

• The code used for the second (bottom) channel input of
R2 is punctured for use by Relay 2 for Phase 3.

Random puncturing results in statistics identical to that of
the network in Figure 7, and thus achieves the same probability
of error. If there exists a puncturing approach with lower
probability of error, than using that puncturing approach can
only improve the reliability of the linear code used in the two-
hop erasure broadcast channel scheme.

This allows us to leverage a main result of [1], which state
that random linear codes are sufficient to achieve the capacity
(cut-set outer bound) of the unicast problem (see Theorem 1
and note Remark 2 and Remark 4 of [1]). Evaluating the



capacity of the eight cuts possible in Figure 7 yields

C{S} =
1− ε21

2
, (15)

C{S,R1} =
1− ε1

2
+

(1− ε1)ε1(1− ε2)
2

+ (1− ε2)τ1,
(16)

C{S,R2} =
1− ε1

2
+ νc + νuε1, (17)

C{S,R′
2} =

1− ε21
2

+ (1− ε3)(τ2 + νu(1− ε1)), (18)

C{S,R1,R2} = (1− ε2)τ1 +
(1− ε1)(1− ε2)

2
(1− 2νu)

+ νc + νu, (19)

C{S,R1,R′
2} = (1− ε2)τ1 +

(1− ε1)(1− ε2)
2

(ε1)

+ (1− ε3)(τ2 + νu(1− ε1)) +
1− ε1

2
,

(20)

C{S,R2,R′
2} =

1− ε1
2

+ (1− ε3)(τ2 + νu(1− ε1)), (21)

C{S,R1,R2,R′
2} = (1− ε2)τ1 +

(1− ε1)(1− ε2)
2

+ (1− ε3)(τ2 + νu(1− ε1)), (22)

and taking the minimum of these yields a rate achievable
through random linear codes. Some are clearly redundant
(e.g., (18)), however, determining the minimum still requires
evaluating (3)–(5) and optimizing over νu and νc. We point
out that the suboptimal choice where νu = 0 and νc =

min
{
bnτ2c(1− ε2),

∣∣∣Yi′RiS

∣∣∣}, results in the TD rate; in par-
ticular, one out of the cuts (15), (21), or (22) will be active.

To ease exposition, we analyze three network regimes
separately. For each each regime, we define νu and νc that
maximize sum rate. The regimes and the resulting sum-rates
are summarized in Table I.

Regime I (ε2 ≤ ε1): When ε2 ≤ ε1, we let νu = 1−ε1
2 and

νc = 0. In this case cuts (15) and (21) are less than all others.
The min of these is chosen as rA&F

i .
Regime II (2ε2 − 1 ≤ ε1 < ε2): When 2ε2 − 1 ≤ ε1 <

ε2, optimization over νu and νc yields the optimal reduction
parameters

ν(II)
u = (1− ε2 −

1− ε1
2

)min{1, 2− ε2 − ε3
(1− ε1)(1− ε2)(2− ε3)

}

(23)

ν(II)
c = (1− ε2 −

1− ε1
2

)− ν(II)
u . (24)

In this case, one of the cuts (15), (17), or (21) is least. The
min of these is chosen as rA&F

i .
Regime III (ε1 < 2ε2 − 1): From (4), in Regime III

Align-and-Forward relaying dedicates no time to sending the
message of the weaker destination (i.e., τ2 = 0). Thus, in this
regime VRi

= ∅, and Stage 1 decoding errors never occur (i.e.,
PEi1 = 0). Cut (22) is the least in this case, and the resulting
per-user rate is rA&F

i = rTDi = 1− ε2.

IV. UPPER BOUNDS

We now present a novel capacity upper bound for our setup:

Theorem 2 (Upper Bounds). The sum-capacity, CΣ, of the
2-hop erasure broadcast channel with ε2 ≤ ε3 satisfies

CΣ ≤ 1− ε1 + 2
(1− ε2)(1− ε3)

2− ε2 − ε3
, (25)

CΣ ≤
(ε3 − ε2)(1− ε1) + 4(1− ε2)(1− ε3)

2− ε2 − ε3
. (26)

Our bound is, in general, not tight with the sum-rate
achieved in our scheme. However, in network regimes where
Align-and Forward meets neither the cut-set nor the recent
broadcast-cut upper bound of [5], our bound is often tighter
than the existing bounds (see Figure 8).
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Fig. 8. Upper and lower bounds on sum capacity for ε1 = 0.5, ε2 ∈ [0, 0.8],
ε3 = 0.8. For this range of values, in Regime I, the cut set bound is tight
with our scheme. In Regime II, our new outer bound is significantly closer to
the achieved rate. In Regime III, A&F and TD are both capacity achieving.

We will require the following lemma, which is related to
Lemma 3 in [6], and proven in Appendix A:

Lemma 3 (Entropy Leakage with no CSIT). Let Y nA and
Y nB be the channel outputs of a two-user (1-hop) erasure
broadcast channel, with independent erasures occurring with
probabilities εa and εb respectively, with εA ≤ εB . If U is a
random variable such that the Markov relationships

U Xn
Y nA

Y nB

hold and G
n

is knowledge of all erasures in the network, then

H(Y nB |U,G
n
) ≥ 1− εB

1− εA
H(Y nA |U,G

n
). (27)

Proof of Theorem 2: Assume communication rates of r1

and r2 from the source to Destinations 1 and 2 respectively are



Regime Network Conditions Reduction Parameters Sum-Rate (rA&F
Σ )

I ε2 ≤ ε1 νu = 1−ε1
2

, νc = 0 (1− ε1) + min
{
ε1(1− ε1), 2(1− ε3)

[
1− 1−ε1

2(1−ε2)
+

(1−ε1)2

2

]}
II 2ε2 − 1 ≤ ε1 < ε2, νu = ν

(II)
u , νc = ν

(II)
c (1− ε1) + min

{
ε1(1− ε1), ν(II)

c + ε1ν
(II)
u , 2(1− ε3)

[
1− 1−ε1

2(1−ε2)
+ (1− ε1)ν(II)

u

]}
III ε1 < 2ε2 − 1 νu = 0, νc = 0 2− 2ε2

TABLE I
ACHIEVABLE SUM RATES USING ALIGN-AND-FORWARD RELAYING.

achievable. Then, we establish the following two inequalities:

nr1

(Fano)
≤ I(M1;Y

n
D1R1

, Y nD1R2
|Gn) + nεn

= I(M1;Y
n
D1R1
|Gn) +H(Y nD1R2

|Y nD1R1
, G

n
)

−H(Y nD1R2
|Y nD1R1

, G
n
,M1) + nεn, (28)

nr2

(Fano)
≤ I(M2;Y

n
D2R1

, Y nD2R2
|Gn) + nεn

≤ I(M2;Y
n
D2R1

, Y nD2R2
|Gn,M1) + nεn

(a)

≤ I(M2;Y
n
D1R1

, Y nD2R2
|Gn,M1) + nεn

= I(M2;Y
n
D1R1
|Gn,M1)

+ I(M2;Y
n
D2R2
|Y nD1R1

, G
n
,M1) + nεn

= I(M2;Y
n
D1R1
|Gn,M1)

+H(Y nD2R2
|Y nD1R1

, G
n
,M1) + nεn

(b)

≤ I(M2;Y
n
D1R1
|Gn,M1)

+
1− ε2
1− ε3

H(Y nD1R2
|Y nD1R1

, G
n
,M1) + nεn. (29)

Step (a) is obtained by giving a genie signal, ZnD2R1
, to

Destination 2 such that the combined tuple (Y nD2R1
, ZnD2R1

) and
the random vector Y nD1R1

, conditioned on G
n

, are identically
distributed random variables. In step (b) we applied Lemma 3
to the term H(Y nD2R2

|Y nD1R1
, G

n
,M1). We now drop the term

εn to avoid confusion with erasure probabilities εk. Scaling
(29) and summing with (28) we find

n

(
r1 +

1− ε3
1− ε2

r2

)
≤ ε3 − ε2

1− ε2
I(M1;Y

n
D1R1
|Gn)

+
1− ε3
1− ε2

I(M1,M2;Y n
D1R1
|Gn

)︷ ︸︸ ︷(
I(M1;Y

n
D1R1
|Gn) + I(M2;Y

n
D1R1
|Gn,M1)

)
+H(Y nD1R2

|Y nD1R1
, G

n
)

≤ ε3 − ε2
1− ε2

I(M1;Y
n
D1R1
|Gn) + 1− ε3

1− ε2
H(Y nD1R1

|Gn)

+H(Y nD1R2
|Y nD1R1

, G
n
)

≤ ε3 − ε2
1− ε2

I(M1;Y
n
R1S|G

n
)

+ n
1− ε3
1− ε2

min{(1− ε2), (1− ε1)}+ n(1− ε3). (30)

We may also derive a complementary bound for 1−ε3
1−ε2 r1 + r2:

n

(
1− ε3
1− ε2

r1 + r2

)
≤ ε3 − ε2

1− ε2
I(M2;Y

n
R2S|G

n
)

+ n
1− ε3
1− ε2

min{(1− ε2), (1− ε1)}+ n(1− ε3). (31)

Since Y nR2S
and Y nR1S

are identically distributed, we also have

I(M1;Y
n
R1S|G

n
) + I(M2;Y

n
R2S|G

n
)

= I(M1;Y
n
R1S|G

n
) + I(M2;Y

n
R1S|G

n
)

≤ I(M1;Y
n
R1S|G

n
) + I(M2;Y

n
R1S|G

n
,M1)

= I(M1,M2;Y
n
R1S|G

n
) ≤ n(1− ε1). (32)

Scaling and summing (30) and (31) , and noting (32), we find

r1 + r2 ≤
2(1− ε3)
2− ε2 − ε3

min{(1− ε2), (1− ε1)}

+
ε3 − ε2

2− ε2 − ε3
(1− ε1) + 2

(1− ε3)(1− ε2)
2− ε2 − ε3

. (33)

Evaluating the min operation for the two possibilities and
simplifying yields the bounds (25) and (26) respectively.
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APPENDIX

A. Proof of Lemma 3

This proof originally appears in [7]. Recall that GnA and GnB
are i.i.d. Bernoulli processes with paramters 1−εA and 1−εB
respectively, with εB ≥ εA. Let G̃nA be another i.i.d. Bernoulli
random process with parameter 1−εB

1−εA , and define

ỸA[t] = G̃A[t]YA[t] (34)

= G̃A[t]GA[t]X[t]. (35)

It is clear that, assuming no CSIT, Ỹ tA and Y tB are sta-
tistically equivalent for t ∈ {1, 2, . . . , n}. Moreover, from



the assumption of Markov relationships, statistical equivalence
holds when conditioned on U . Noting this, we see

H(YB [t]|Y t−1
B , U,G

n
)

(a)
= H(YB [t]|Y t−1

B , U,G
t
)

= (1− εB)H(X[t]|Y t−1
B , U,G

t−1
, GB [t] = 1)

+ εBH(0|Y t−1
B , U,G

t−1
, GB [t] = 0)

= (1− εB)H(X[t]|Y t−1
B , U,G

t−1
, GB [t] = 1)

(b)
= (1− εB)H(X[t]|Y t−1

B , U,G
t
)

(c)
= (1− εB)H(X[t]|Ỹ t−1

A , U,G
t
)

(d)

≥ (1− εB)H(X[t]|Y t−1
A , U,G

t
)

=
1− εB
1− εA

H(YA[t]|Y t−1
A , U,G

t
)

=
1− εB
1− εA

H(YA[t]|Y t−1
A , U,G

n
), (36)

where (a) holds because the channels are i.i.d., (b) holds
because the transmitter has no CSIT and therefore, (c) holds
because of statistical equivalence, and (d) holds because
H(Ỹ tA|Y tA, U,G

t
) = 0. Using (36), we arrive at the lemma

statement:

H(Y nB |U,G
n
) =

n∑
t=1

H(YB [t]|Y t−1
B , U,Gn)

≥
n∑
t=1

1− εB
1− εA

H(YA[t]|Y t−1
A , U,Gn))

=
1− εB
1− εA

H(Y nA |U,G
n
). (37)


